PARETO ENVELOPES IN SIMPLE POLYGONS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto Envelopes in Simple Polygons

For a set T of n points in a metric space (X, d), a point y ∈ X is dominated by a point x ∈ X if d(x, t) ≤ d(y, t) for all t ∈ T and there exists t ∈ T such that d(x, t) < d(y, t). The set of nondominated points of X is called the Pareto envelope of T. H. Kuhn (1973) established that in Euclidean spaces, the Pareto envelopes and the convex hulls coincide. Chalmet et al. (1981) characterized the...

متن کامل

Single-Point Visibility Constraint Minimum Link Paths in Simple Polygons

We address the following problem: Given a simple polygon $P$ with $n$ vertices and two points $s$ and $t$ inside it, find a minimum link path between them such that a given target point $q$ is visible from at least one point on the path. The method is based on partitioning a portion of $P$ into a number of faces of equal link distance from a source point. This partitioning is essentially a shor...

متن کامل

Routing in Simple Polygons

A routing scheme R in a network G = (V,E) is an algorithm that allows to send messages from one node to another in the network. We are first allowed a preprocessing phase in which we assign a unique label to each node p ∈ V and a routing table with additional information. After this preprocessing, the routing algorithm itself must be local (i.e., we can only use the information from the label o...

متن کامل

Trees in simple Polygons

We prove that every simple polygon contains a degree 3 tree encompassing a prescribed set of vertices. We give tight bounds on the minimal number of degree 3 vertices. We apply this result to reprove a result from Bose et al. [3] that every set of disjoint line segments in the plane admits a binary tree. Introduction Recently many papers have been published regarding the augmentation of discret...

متن کامل

Diffuse Reflections in Simple Polygons

We prove a conjecture of Aanjaneya, Bishnu, and Pal that the maximum number of diffuse reflections needed for a point light source to illuminate the interior of a simple polygon with n walls is bn/2c − 1. Light reflecting diffusely leaves a surface in all directions, rather than at an identical angle as with specular reflections.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Geometry & Applications

سال: 2010

ISSN: 0218-1959,1793-6357

DOI: 10.1142/s0218195910003499